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OPTIMAL CONTROL OF INGOT HEATING IN FLOW-THROUGH FURNACES 

V. B. Kovalevskii, F. M. Babushkin, and O. Yu. Sedyako UDC 621.1.018 

The algorithm developed here allows the ingot-heating conditions in a furnace 
corxesponding to the least skin formation to be determined. The influence of 
the furnace atmosphere on skin growth in heating is investigated. 

Economic efficiency- in particular, the choice of optimal technological conditions 
with respect to specified criteria - is one of the most important questions in studying heat- 
ing-furnace operation. In considering the optimal control of ingot heating, effective algo- 
rithms have been developed for linear problems [i]. For nonlinear problems, it is difficult 
to obtain a control algorithm. However, the introduction of nonlinear components in the 
mathematical description of the process permits the construction of a more adequate mathe- 
matical model. Consider the nonlinear problem of skin minimization for bodies with a small 
internal resistance 

dT 
- -  k' (~  (Tr (t) - -  T (t)) + a (T~ (t) - -  T~ (0)) ,  ( 1 ) 

dt 

T ( O ) = T o ,  T ( ~ = T f  (2 

tf  
i' ~ exp [--~IT (t)] dt --+ rain. ( 3 O' I (t) Tc(t) 

The optimal-control problem consists of the choice of conditions of temperature variation 
of the medium over time such as to ensure ingot heating from a specified initial temperature 
T o to a specified final temperature Tf, with minimum skin formation at time tf. The control 
function Tc(t) satisfies the constraint T o < A I ~ Tc(t) ~ Tf ~ A 2 for any 0 ~ t ~ tf and is 
a piecewise-continuous function of t with a finite number of points of discontinuity. 

Using the mathematical apparatus of [i, 2], the optimal heating trajectory of the metal, 
the optimal control, and the switching time of the controlling action (temperature of the 
heating medium) are obtained. The procedure for elucidating the structure of the controlling 
function, the optimal trajectory, and the algorithm for solving Eqs. (1)-(3) may be found 
in the Appendix. 

After finding the switching time ti, the optimal control is written in the form 

{&, O~t<t~, 
To(t)= A~, t~ t~ t f .  

Thus, a two-stage heating graph of fine-grade ingots is obtained, as well as an algo- 
rithm for determining the switching time. 
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Industrial tests confirm the efficiency of the algorithm for solving the problem of 
nonlinear control of ingot heating by major optimization. 

Two industrial experiments are conducted on the 320/150 furnace of the Belorussian 
Metallurgical Plant. In experiment A, the parameters characterizing the oxidation dynamics 
KA, SA are determined by the plant technology. The least-squares method gives the coeffi- 
cient values: ~A = 0-418528"107, ~A = 0"9"104- The ingot is heated from 50 to I188~ in 
i00 min. The skin calculated in the case of heating by the plant technology is 3.09161 kg/ 
m 2. The algorithm to find the switching time indicates that the best (mean) temperature 
of the medium is 700~ at 0 ~ t ~ 75 min, and 1200~ at 75 ~ t ~ i00 min. Calculations show 
that the ingot is heated from 50~ to I185~ and the least possible amount of skin in the 
whole process is 1.38191 kg/m 2. 

Numerical experiment shows that significant decrease in the skin is achieved. 

The dynamics of skin growth is now changed: in experiment B, the parameters of the 
furnace atmosphere are characterized by a higher (by 0.15) gas-air ratio in the first three 
zones of the furnace and a lower (by 0.09) ratio in the other zones than in experiment A. 
The coefficients K B = 0.141049.105 and ~B = 3"10s are obtained. 

In 160 min, the ingot is heated from 50 to III0~ At the end of the heating, the skin 
amounts to 1.3876 kg/m 2. The less stringent heating conditions in experiment B permit signif- 

icant reduction in the rate of oxidation. The algorithm for finding the switching time indi- 
cates that the best (mean) temperature of the medium is 680~ at 0 ~ t < 146.3 min and 1200~ 
at 146.3 ~ t ~ 160 min; the ingot is heated from 50 to IIII~ here, and the minimal skin formed 
in the process is 1.14615 kg/m 2. 

Note also that, after optimizing the temperature of the medium, the amount of skin formed 
in the heating time may be reduced simply by changing the furnace atmosphere (the temperature 
conditions remain the same). Thus, on choosing the optimal temperature conditions for the 
initial data in experiment A and then changing the atmosphere in the furnace to correspond 
to experiment B, the skin formed in the heating process (i00 min) is 0.741753 kg/m 2, which 
is 0.6 kg/m 2 less than for the same temperature conditions without changing the atmosphere. 

Thus, the theoretical and experimental data show that the most effective method of skin 
reduction is to create a less oxidative atmosphere in the furnace. Without changing the 
furnace atmosphere, the basic resource in terms of skin reduction is to develop optimal 
temperature conditions. 

APPENDIX 

In view of Corollary 1 of [i], the control um(t) realizing an infinite optimal trajec- 
tory (IOT) must be a piecewise-constant function. 

It is simple to show that the IOT ~(t) is found as a result of integrating Eq. (i) in 
the case where Tc(t) = At, t > 0, T(0) = T 0, i.e., uw(t) = A l, t > 0, and condition (b) of 
the theorem formulated and proven in [i] is satisfied for the given IOT. 

Calculating the derivative with respect to T for the integrand in Eq. (3), it is found 
that the integrand decreases with decrease in temperature of the metal. 

Since, for any arc of the trajectory ~(t) and any 0 ~ t I < t~, there is a unique solu- 
tion of Eq. (i) passing through the points ~(t I) and m(t2), then ~(t) is the 10T for the 
problem in Eqs. (1)-(3) by definition [i]. Since, by construction, T(t) ~ ~(t), u > 0 
for any permissible process T(t), Tc(t) of the problem in Eqs. (i)-(3), condition (b) of the 
theorem of [i] is satisfied. 

Therefore, it is obvious that the solution of the problem with a free right-hand end 
of the trajectory ~1(t) [i] coincides with ~(t), t > 0. 

The solution of the problem with a free left-hand end of the trajectory ~2(t) and time 
t 2 is now found. 

Since limw(t) = A I, there is a time t 2 < tf such that Eq. (i) with the boundary condi- 

tions T(t 2) = m(t2), T(tf) = Tf on the segment [t2, tf] has a solution ~2(t) but the analo- 
gous boundary problem at t21 > t 2 has no solution in all possible conditions of temperature 
variation of the medium. 
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The trajectory ~(t) may be obtained as the solution of the following problem 

dq)z _-- k' (o~ (,42 -- 92 (t)) 4- (~ (A~ -- (g~ (0)), ( 4 )  
dt 

It may be shown that q~2 (t), t 2 <- t <_ tf and t 2 are the desired trajectory and time. Let 
x2(t) be the optimal solution of the corresponding problem with a free left-hand end of the 
trajectory on the segment [t2, tf], when x2(t 2) > ~?(t2) , since otherwise this contradicts 
the choice of t 2. In view of the continuity of x2(t) and ~2(t) on segment [t2, tf] and Eqs. 
(4) and (5), it follows that there is a time t' < tf such that: x2(t') = ~(t'). It is 
obvious that: x2(t) = ~2(t), tf -> t _> t' and x2(t) > ~2(t), t' > t _> t 2. Hence 

i f ~f 
.i' ~ exp [--~/ch (QI dt < [ ~ exp [--~lx2 (t)) dr, 
. %(0  ;~ x~(t) 

i.e., x2(t) is not the optimal solution of the problem with a free left-hand end of the trajec- 
tory on the segment [t=, tf]. This is a contradiction. Therefore, ~2(t) is an optimal solution 
of the problem with a free left-hand end of the trajectory. 

Thus, the algorithm for solving Eqs. (1)-(3) consists in determining t2, which is found 
as the only root of the equation 

e (~)--~2 (~) = 0, 

where e(T) and ~2(~) are established as a result of solving the problems 

de 
~--7- = k' (~ (A~ - e (t)) + ~ (A~ - e~ (t))), o < t ~ T, �9 > o, 
~ a  

e (0) = To; 

dt 

~ (~) = e (T), ~ (%) -- Tf, 

The solution of the temperature problem in Eqs. (7) and (8) is found in implicit form. 

A differential equation may be obtained from Eq. (7) 

k k (a b (A~ - -  (,J) ~ ~ (A1 - - e ) )  dt = Repde;  k'  --  
Rcp 

In  d i m e n s i o n l e s s  fo rm 

(6)  

(7)  

( 8 )  

(9)  

(10)  

where 

Sk dO 
- - d F o  = 

k ! + Bi Bi 0 - - 0 "  
Sk Sk 

~, t co ~zR 
- -  O= -, B i - -  Fo cp R ~ ' A~ ~, ' 

Sk = - ~ A ~ R  

Integration with respect to Fo from Fo I 
01 = 0(T 0) to 8 2 = e(w) gives 

Note that [2] 

= Fo(0) to FO 2 = FO(T) and with respect to 0 from 

I (F% --  Fo 0 1 i ' 
k Sk 6 

dO 

0~+-skBi 0 - - ( l + ~ B i  ) 

dO 

04 + Bi 0 - - ( 1 +  Bi ) 
sk - ~ -  

= - - [ M l n  0z + a ~ 0 + b ~  
L - -0  z - -  a,0 - -  bl 

+ 
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+ N l n  O -- b~ 1/2 20 @ a~ l 
1-----6- + L arctg -- - j + C, 

- -  2 V~0 + o~1 
where  C i s  an a r b i t r a r y  c o n s t a n t ;  

~ 1  " 2 

/ pZ ' p~ qa pZ p~ q3 

~ o =  ~ +  16 z 27 + 16 16 z 27 

If R (8, Bi, Sk) is the original integrand, the dimensionless body temperature @ at time 
Fo 2 is determined as the root of the equation 

__!_l ( F o 2 _ F o 0  1 JR(02, Bi, S k ) - - R ( %  Bi, Sk)]. (ii) 
k Sk 

Equation (11) is the solution of Eqs. (7) and (8) in implicit form. 

Finding 8 2 , it is possible to determine 

~(~) =02A1- (12)  

P r o c e e d i n g  a n a l o g o u s l y  f o r  Eqs .  (9 )  and ( 1 0 ) ,  t h e  f o l l o w i n g  e q u a t i o n  i s  o b t a i n e d  a t  t i m e  
tf in dimensionless form 

I i 
- -  (Fo r -  Fo~) = - -  - -  [R' (0~, Bi, S k ' ) -  R' (0~, Bi, Sk')]. (13)  

k Sk' 

Adding Eqs .  (11)  and ( 1 3 ) ,  t a k i n g  i n t o  a c c o u n t  t h a t  Fo 1 = 0, and u s i n g  t h e  p r e v i o u s  n o t a t i o n ,  
an e q u a t i o n  f o r  d e t e r m i n i n g  ~ ( t  2) f rom Eq. (12)  i s  o b t a i n e d  

1 ~ t f _  Z [ ~ ( ~ ( x )  ~R aA~R I To ~R ~A~R 1]  (14)  

aA~ A2 ' ~ ' ~ , A2 ' l ' ~ 

S o l v i n g  Eq. (14)  f o r  ~ (~ )  on t h e  segment  [T o , A1] ,  ~ ( t  2) i s  o b t a i n e d .  The t i m e  t 2 i s  d e f i n e d  
a s  

t 2 = F o 2  epR~ , 
(15) 

w h e r e  ' - - - T - - -  

.. A1 ' ~ ' ~ " 

N u m e r i c a l  c a l c u l a t i o n s  whow t h a t  �9 ~ +~ as  m(T) ~ A z. On t h e  o t h e r  hand ,  ~ ( t  2) t e n d s  t o  
A 1, which  l e a d s  t o  c o n s i d e r a b l e  c o m p u t a t i o n a l  e r r o r  in  d e t e r m i n i n g  t 2 on t h e  r i g h t - h a n d  s i d e  
of Eq. (14). 

Thus, the sequence of finding ~(t 2) and t 2 to determine ~2(t) from Eqs. (9) and (i0) 
is unsatisfactory, because of the large computational error. 

Another method of finding m(t 2) and t2 is possible. Basically, the time t 2 is found 
first, and then the temperature m(t2). The algorithm may be written in the following form. 

Step i. Specify the accuracy of the calculation r and set a: : 0, b: : tf. 

Step 2. Calculate ~: = (a+ b)/2. 

Step 3. Integrating Eq. (7) with the initial condition in Eq. (8), find m(~). 

Step 4. Integrating Eq. (9) with the initial condition~ ~(~) = ~(~), find ~2(tf). 
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Step 5. 

Step 6. 

Step 7. 

If ~2(tf) > Tf + s, then b: = ~; proceed to Step 2. 

If ~2(tf) < Tf - E, then a: = ~; proceed to Step 2. 

If [~2(tf) - Tf] ~ s, set t 2 = (a+ b)/2; the calculation is over. 

NOTATION 

t, time; T(t), temperature of metal at time t; Tc(t), temperature of medium at time t; 
k', reduced form factor of body; ~, convective thermoemission coefficient; o, radiative thermo- 
emission coefficient; T o and Tf, initial and final temperature of metal; tf, fixed duration 
of heating process; p, ratio of activation energy to gas constant; K, specified constant 
characterizing the dynamics of skin growth; At, A2, minimum and maximum temperature of medium; 
k, form factor of body; R, characteristic dimension of body; c, specific heat; p, density 
of material. 
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HEAT TRANSFER ON MOUNTING ELECTRONIC COMPONENTS ONTO 

A PRINTED CIRCUIT BOARD 

V. G. Prokopov, N. M. Fialko, V. G. Sarioglo, 
and A. A. Grachev 

L~C 621.3.049.75.002 

The results of mathematical modeling of nonlinear nonsteady heat-transfer 
processes in conditions of IR soldering of components onto printed circuit 
boards are outlined. 

Establishing the thermophysical principles of the technological process of mounting 
electronic components on a printed circuit board (PB) is an urgent problem in the develop- 
ment of this technology [1-3]. Mathematical modeling plays an important role in solving 
this problem, because of its many well-known advantages: the possibility of compensating 
for the unavoidable omissions of experimental work, significant reduction in the volume of 
expensive full-scale experiments, the simplicity of investigating different parameter combi- 
nations, etc. 

The aim of the present work is the mathematical modeling of heat transfer in the tech- 
nology of surface mounting. The physical situation corresponding to the use of resistive 
and IR heating is analyzed. The temperature conditions of printed elements (PE) correspond- 
ing to all the possible single electronic-engineering components (EEC) which may be mounted 
on PB of highly and poorly heat-conducting materials are studied. Thus, outputless EEC (a 
monolithic tantalum capacitor and a matrix microframe) and EEC with planar outputs (an N- 
type microframe and a plastic frame) are considered, in the process of mounting on ceramic 
and glass-textolite PB. 

In characterizing the processes that occur overall in the given conditions, a series 
of factors complicating the investigation may be noted: in particular, nonlinearities of 
various kinds, complex configurations of the given regions, phase transitions (melting and 
hardening of the solder), PE Motion in the furnace for IR soldering, diversity of the PE 
constructional materials, etc. Consequently, the preliminary investigations must include 
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